size

Textos y Resúmenes de Psicología

Material de estudio para estudiantes de Psicología y carreras relacionadas.



La Respiración Celular es el proceso por el cual las células degradan las moléculas de alimento para obtener energía.
La respiración celular es una reacción exergónica, donde parte de la energía contenida en las moléculas de alimento es utilizada por la célula para sintetizar ATP. Decimos parte de la energía porque no toda es utilizada, sino que una parte se pierde.
Aproximadamente el 40% de la energía libre emitida por la oxidación de la glucosa se conserva en forma de ATP. Cerca del 75% de la energía de la nafta se pierde como calor de un auto; solo el 25% se convierte en formas útiles de energía. La célula es mucho más eficiente.
La respiración celular es una combustión biológica y puede compararse con la combustión de carbón, bencina, leña. En ambos casos moléculas ricas en energía son degradadas a moléculas más sencillas con la consiguiente liberación de energía.
Tanto la respiración como la combustión son reacciones exergónicas.
Sin embargo existen importantes diferencias entre ambos procesos. En primer lugar la combustión es un fenómeno incontrolado en el que todos los enlaces químicos se rompen al mismo tiempo y liberan la energía en forma súbita; por el contrarío la respiración es la degradación del alimento con la liberación paulatina de energía. Este control está ejercido por enzimas específicas.
En segundo lugar la combustión produce calor y algo de luz. Este proceso transforma energía química en calórica y luminosa. En cambio la energía liberada durante la respiración es utilizada fundamentalmente para la formación de nuevos enlaces químicos (ATP).
La respiración celular puede ser considerada como una serie de reacciones de óxido-reducción en las cuales las moléculas combustibles son paulatinamente oxidadas y degradadas liberando energía. Los protones perdidos por el alimento son captados por coenzímas.
La respiración ocurre en distintas estructuras celulares. La primera de ellas es la glucólisis que ocurre en el citoplasma. La segunda etapa dependerá de la presencia o ausencia de O2 en el medio, determinando en el primer caso la respiración aeróbica (ocurre en las mitocondrias), y en el segundo caso la respiración anaeróbica o fermentación (ocurre en el citoplasma).

La glucólisis, lisis o escisión de la glucosa, tiene lugar en una serie de nueve reacciones, cada una catalizada por una enzima específica, hasta formar dos moléculas de ácido pirúvico, con la producción concomitante de ATP. La ganancia neta es de dos moléculas de ATP, y dos de NADH por cada molécula de glucosa.
Las reacciones de la glucólisis se realizan en el citoplasma, como ya adelantáramos y pueden darse en condiciones anaerobias; es decir en ausencia de oxígeno.
Los primeros cuatro pasos de la glucólisis sirven para fosforilar (incorporar fosfatos) a la glucosa y convertirla en dos moléculas del compuesto de 3 carbonos gliceraldehído fosfato (PGAL). En estas reacciones se invierten dos moléculas de ATP a fin de activar la molécula de glucosa y prepararla para su ruptura.

Paso 1
La serie de reacciones glucolíticas se inicia con la activación de la glucosa
Glucosa + ATP  glucosa 6 fosfato + ADP

La reacción del ATP con la glucosa para producir glucosa 6-fosfatoy ADP es exergónica. Parte de la energía liberada se conserva en el enlace que une al fosfato con la molécula de glucosa que entonces se energiza.

Paso 2
La glucosa 6-fosfato sufre una reacción de reordenamiento catalizada por una isomerasa, con lo que se forma fructosa 6-fosfato.



Paso 3
La fructosa 6-fosfato acepta un segundo fosfato del ATP, con lo que se genera fructosa 1,6-difosfato; es decir fructosa con fosfatos en las posicio-nes 1 y 6.

La enzima que regula esta reacción es la fosfofructocinasa.
Nótese que hasta ahora se han invertido dos moléculas de ATP y no se ha recuperado energía.
La fosfofructocinasa es una enzima alostérica, el ATP es un efector alostérico que la inhibe. La interacción alostérica entre ellos es el principal mecanismo regulador de la glucólisis. Si existe ATP en cantidades suficientes para otros fines de la célula, el ATP inhibe la actividad de la enzima y así cesa la producción de ATP y se conserva glucosa. Al agotar la célula la provisión de ATP, la enzima se desinhibe y se reanuda la degradación de la glucosa. Este es uno de los puntos principales del control de la producción de ATP.
Paso 4
La fructosa 1,6 -difosfato se divide luego en dos azúcares de 3 carbonos, gliceraldehído 3-fosfato y dihidroxiacetona fosfato. La dihidroxiacetona fosfato es convertida enzimáticamente (isomerasa) en gliceraldehído fósfato. Todos los pasos siguientes deben contarse dos veces para tener en cuenta el destino de una molécula de glucosa.

Debemos recordar que hasta el momento no se ha obtenido ninguna energía biológicamente útil. En reacciones subsecuentes, la célula recupera parte de la energía contenida en el PGAL.
Paso 5
Las moléculas de PGAL se oxidan es decir, se eliminan átomos de hidrógeno con sus electrones, y el NAD+ se reduce a NADH. Esta es la primera reacción de la cual la célula cosecha energía. El producto de esta reacción es el fosfoglicerato. Este compuesto reacciona con un fosfato inorgánico (Pi) para formar 1,3 difosfoglicerato. El grupo fosfato recién incorporado se encuentra unido por medio de un enlace de alta energía.

Paso 6
El fosfato rico en energía reacciona con el ADP para formar ATP. (en total dos moléculas de ATP por molécula de glucosa). Esa transferencia de energía desde un compuesto con un fosfato, de alta energía se conoce como fosforfiación.

Paso 7
El grupo fosfato remanente se transfiere enzimáticamente de la posición 3 a la posición 2 (ácido 2-fosfoglicérico).

Paso 8
En este paso se elimina una molécula de agua del compuesto 3 carbono. Este reordenamiento interno de la molécula concentra energía en la vecindad del grupo fosfato. El producto es el ácido fosfoenolpirúvico (PEP).

Paso 9
El ácido fosfoenolpirúvico tiene la capacidad de transferir su grupo fosfato a una molécula de ADP para formar ATP y ácido pirúvico. (dos moléculas de ATP y ácido pirúvico por cada molécula de glucosa).


RESUMEN DE LA GLUCÓLISIS






VÍAS ANAERÓBICAS
El ácido pirúvico puede tomar por una de varias vías. Dos son anaeróbicas (sin oxígeno) y se denomina FERMENTACIÓN ALCOHÓLICA y FERMENTACIÓN LÁCTICA.
A la falta de oxígeno, el ácido pirúvico puede convertirse en etanol (alcohol etílico) o ácido láctico según el tipo de célula. Por ejemplo, las células de las levaduras pueden crecer con oxígeno o sin él. Al extraer jugos azucarados de las uvas y al almacenarlos en forma anaerobia, las células de las levaduras convierten el jugo de la fruta en vino al convertir la glucosa en etanol. Cuando el azúcar se agota las levaduras dejan de fermentar y en este punto la concentración de alcohol está entre un 12 y un 17 % según sea la variedad de la uva y la época en que fue cosechada.
La formación de alcohol a partir del azúcar se llama fermentación.
Fermentación alcohólica
El ácido pirúvico formado en la glucólisis se convierte anaeróbicamente en etanol. En el primer caso se libera dióxido de carbono, y en el segundo se oxida el NADH y se reduce a acetaldehído.
Otras células, como por ejemplo los glóbulos rojos, las células musculares y algunos microorganismos transforman el ácido Pirúvico en ácido láctico.
En el caso de las células musculares, la fermentación láctica, se produce como resultado de ejercicios extenuantes durante los cuales el aporte de oxígeno no alcanza a cubrir las necesidades del metabolismo celular. La acumulación del ácido láctico en estas células produce la sensación de cansancio muscular que muchas veces acompaña a esos ejercicios.

Fermentación láctica
En esta reacción el NADH se oxida y el ácido pirúvico se reduce transformándose en ácido láctico.
La fermentación sea ésta alcohólica o láctica ocurre en el citoplasma.



ESQUEMA BIOQUÍMICO DEL PROCESO DE FERMENTACIÓN
A)     Alcohólica : 2 ácido pirúvico + 2 NADH Þ 2 etanol + 2 CO2 + 2 NAD+
B)      Láctica : 2 ácido pirúvico + 2 NADH Þ 2 ácido láctico + 2 NAD+

La finalidad de la fermentación es regenerar el NAD+ permitiendo que la glucólisis continúe y produzca una provisión pequeña pero vital de ATP para el organismo.

RESPIRACIÓN AERÓBICA
En presencia de oxígeno, la etapa siguiente de la degradación de la glucosa es la respiración, es decir la oxidación escalonada del ácido pirúvico a dióxido de carbono y agua.
La respiración aeróbica se cumple en dos etapas: el ciclo de Krebs y el transporte de electrones y la fosforilación oxidativa (estos dos últimos procesos transcurren acopladamente).
En las células eucariotas estas reacciones tienen lugar dentro de las mitocondrias; en las procariotas se llevan acabo en estructuras respiratorias de la membrana plasmática.

Para concluir, es importante destacar que el ciclo de Krebs se lleva a cabo en la matriz mitocondrial; mientras que el transporte de electrones y la fosforilación oxidativa se producen a nivel de las crestas mitocondriales.

CICLO DE KREBS
El ácido pirúvico sale del citoplasma, donde se produce mediante glucólisis y atraviesa las membranas externa e interna de las mitocondrias. Antes de ingresar al Ciclo de Krebs, el ácido pirúvico, de 3 carbonos, se oxida. Los átomos de carbono y oxígeno del grupo carboxilo se eliminan como dióxido de carbono (descarboxilación oxidativa) y queda un grupo acetilo, de dos carbonos. En esta reacción exergónica, el hidrógeno del carboxilo reduce a una molécula de NAD+ a NADH.

Ahora la molécula original de glucosa se ha oxidado a dos moléculas de CO2, y dos grupos acetilos y, además se formaron 4 moléculas de NADH (2 en la glucólisis y 2 en la oxidación del ácido pirúvico).
Cada grupo acetilo es aceptado por un compuesto llamado coenzima A dando un compuesto llamado acetilcoenzima A (acetil CoA). Esta reacción es el eslabón entre la glucólisis y el ciclo de Krebs.

El ciclo de Krebs también conocido como ciclo del ácido cítrico es la vía común final de oxidación del ácido pirúvico, ácidos grasos y las cadenas de carbono de los aminoácidos.

La primera reacción del ciclo ocurre cuando la coenzima A transfiere su grupo acetilo (de 2 carbonos) al compuesto de 4 carbonos (ácido oxalacético) para producir un compuesto de 6 carbonos (ácido cítrico).
El ácido cítrico inicia una serie de pasos durante los cuales la molécula original se reordena y continúa oxidándose, en consecuencia se reducen otras moléculas: de NAD+ a NADH y de FAD+ a FADH2. Además ocurren dos carboxilaciones y como resultado de esta serie de reacciones vuelve a obtenerse una molécula inicial de 4 carbonos el ácido oxalacético.
El proceso completo puede describirse como un ciclo de oxalacético a oxalacético, donde dos átomos de carbono se adicionan como acetilo y dos átomos de carbono (pero no los mismos) se pierden como CO2.

TRANSPORTE DE ELECTRONES O CADENA RESPIRATORIA
En esta etapa se oxidan las coenzimas reducidas, el NADH se convierte en NAD+ y el FADH2 en FAD+. Al producirse esta reacción, los átomos de hidrógeno (o electrones equivalentes), son conducidos a través de la cadena respiratoria por un grupo de transportadores de electrones, llamados citocromos. Los citocromos experimentan sucesivas oxidaciones y reducciones (reacciones en las cuales los electrones son transferidos de un dador de electrones a un aceptor).
En consecuencia, en esta etapa final de la respiración, estos electrones de alto nivel energético descienden paso a paso hasta el bajo nivel energético del oxígeno (último aceptor de la cadena), formándose de esta manera agua.
Cabe aclarar que los tres primeros aceptores reciben el H+ y el electrón conjuntamente. En cambio, a partir del cuarto aceptor, sólo se transportan electrones, y los H+ quedan en solución.

FOSFORILACIÓN OXIDATIVA
El flujo de electrones está íntimamente acoplado al proceso de fosforilación, y no ocurre a menos que también pueda verificarse este último. Esto, en un sentido, impide el desperdicio ya que los electrones no fluyen a menos que exista la posibilidad de formación de fosfatos ricos en energía. Si el flujo de electrones no estuviera acoplado a la fosforilación, no habría formación de ATP y la energía de los electrones se degradaría en forma de calor.
Puesto que la fosforilación del ADP para formar ATP se encuentra acoplada a la oxidación de los componentes de la cadena de transporte de electrones, este proceso recibe el nombre de fosforilación oxidativa.
En tres transiciones de la cadena de transporte de electrones se producen caídas importantes en la cantidad de energía potencial que retienen los electrones, de modo que se libera una cantidad relativamente grande de energía libre en cada uno de estos tres pasos, formándose ATP.

2 comentarios:

Este comentario ha sido eliminado por el autor.

Estoy estudiando química en Argentina por lo que estoy viviendo en uno de los departamentos en buenos aires. este es un buen resumen que ayuda a entender un poco mas estos temas complejos.

Publicar un comentario